Fpga Based Adaptive Neuro Fuzzy Inference Controller for Full Vehicle Nonlinear Active Suspension Systems
نویسندگان
چکیده
A Field Programmable Gate Array (FPGA) is proposed to build an Adaptive Neuro Fuzzy Inference System (ANFIS) for controlling a full vehicle nonlinear active suspension system. A Very High speed integrated circuit Hardware Description Language (VHDL) has been used to implement the proposed controller. An optimal Fraction Order PI λ D μ (FOPID) controller is designed for a full vehicle nonlinear active suspension system. Evolutionary Algorithm (EA) has been applied to modify the five parameters of the FOPID controller (i.e. proportional constant Kp, integral constant Ki, derivative constant Kd, integral order λ and derivative order μ). The data obtained from the FOPID controller are used as a reference to design the ANFIS model as a controller for the controlled system. A hybrid approach is introduced to train the ANFIS. A Matlab Program has been used to design and simulate the proposed controller. The ANFIS control parameters obtained from the Matlab program are used to write the VHDL codes. Hardware implementation of the FPGA is dependent on the configuration file obtained from the VHDL program. The experimental results have proved the efficiency and robustness of the hardware implementation for the proposed controller. It provides a novel technique to be used to design NF controller for full vehicle nonlinear active suspension systems with hydraulic actuators.
منابع مشابه
Active Suspension System Control Using Adaptive Neuro Fuzzy (ANFIS) Controller
The purpose of designing the active suspension systems is providing comfort riding and good handling in different road disturbances. In this paper a novel control method based on adaptive neuro fuzzy system in active suspension system is proposed. Choosing the proper data base to train the ANFIS has an important role in increasing the suspension system’s performance. The data base which is used...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملControlling structures by inverse adaptive neuro fuzzy inference system and MR dampers
To control structures against wind and earthquake excitations, Adaptive Neuro Fuzzy Inference Systems and Neural Networks are combined in this study. The control scheme consists of an ANFIS inverse model of the structure to assess the control force. Considering existing ANFIS controllers, which require a second controller to generate training data, the authors’ approach does not need anot...
متن کاملNeuro-fuzzy control of bilateral teleoperation system using FPGA
This paper presents an adaptive neuro-fuzzy controller ANFIS (Adaptive Neuro-Fuzzy Inference System) for a bilateral teleoperation system based on FPGA (Field Programmable Gate Array). The proposed controller combines the learning capabilities of neural networks with the inference capabilities of fuzzy logic, to adapt with dynamic variations in master and slave robots and to guarantee good prac...
متن کاملDesign an intelligent controller for full vehicle nonlinear active suspension systems
The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial i...
متن کامل